arXiv:2110.11088v3 [cs.LG] 24 Jan 2022

RoMA': a Method for Neural Network Robustness Measurement and
Assessment

Natan Levy '

Abstract

Neural network models have become the lead-
ing solution for a large variety of tasks, such as
classification, language processing, and others.
However, their reliability is heavily plagued by
adversarial inputs: inputs generated by adding
tiny perturbations to correctly-classified inputs,
and for which the neural network produces erro-
neous results. In this paper, we present a new
method called Robustness Measurement and As-
sessment (RoMA), which measures the robustness
of a neural network model against such adver-
sarial inputs. Specifically, ROMA determines the
probability that a random input perturbation might
cause misclassification. The method allows us to
provide formal guarantees regarding the expected
frequency of errors that a trained model will en-
counter after deployment. The type of robust-
ness assessment afforded by ROMA is inspired by
state-of-the-art certification practices, and could
constitute an important step towards integrating
neural networks in safety-critical systems.

1. INTRODUCTION

In the passing decade, deep neural networks (DNNs) have
emerged as one of the most exciting developments in com-
puter science, allowing computers to outperform humans
in various classification tasks. However, a major issue with
DNN s is the existence of adversarial inputs (Goodfellow
et al., 2014): inputs that are very close (according to some
metrics) to correctly-classified inputs, but which are mis-
classified themselves. It has been observed that many state-
of-the-art DNNs are highly vulnerable to adversarial in-
puts (Carlini & Wagner, 2017), and it has been suggested
that adversarial inputs are an inescapable part of the neural
network architecture (Ilyas et al., 2019).

“Equal contribution 'Department of Computer Science and
Engineering, Hebrew University, Jerusalem, Israel. Correspon-
dence to: Natan Levy <natan.levyl @mail.huji.ac.il>, Guy Katz
<guykatz@cs.huji.ac.il>.

Guy Katz '

As the impact of the Al revolution is becoming evident, reg-
ulatory agencies are starting to address the challenge of in-
tegrating DNNs into various automotive and aerospace sys-
tems — by forming workgroups to create the needed guide-
lines. Notable examples in the European Union include SAE
G-34 and EUROCAE WG-114 (Pereira & Thomas, 2020;
Vidot et al., 2021); and the European Union Safety Agency
(EASA), which is responsible for civil aviation safety, and
which has published a road map for certifying Al-based
systems (European Union Aviation Safety Agency, 2020).
These efforts, however, must overcome a significant gap:
on one hand, the superior performance of DNNs makes it
highly desirable to incorporate them into various systems,
but on the other hand, the DNN’s intrinsic susceptibility to
adversarial inputs could render them unsafe. This dilemma
is particularly felt in safety-critical systems, such as auto-
motive, aerospace and medical devices, where regulators
and public opinion set a high bar for reliability (Dmitriev
etal., 2021).

In this work, we seek to begin bridging this gap, by devising
a framework that could allow engineers to bound and miti-
gate the risk introduced by a DNN, effectively containing
the phenomenon of adversarial inputs. Our approach is in-
spired by common practices of regulatory agencies, which
often need to certify various systems with components that
might fail due to an unexpected hazard. A widely used ex-
ample is the certification of jet engines, which are known
to occasionally fail. In order to mitigate this risk, manu-
facturers compute the engines’ mean time between failures
(MTBF), and then use this value in performing a functional
hazard analysis (FHA) — which can eventually justify the
safety of the jet engine system as a whole (FAA, 2021a).
For example, the Federal Aviation Administration (FAA)
guides that the probability for a catastrophic failure event
per operational hour should not exceed 10~ (FAA, 2021b).
To perform a similar process for DNN-based systems, we
first need a technique for accurately bounding the likelihood
of a failure to occur — e.g., for measuring the probability
of encountering an adversarial input.

In this paper, we address the aforesaid crucial gap by intro-
ducing a straightforward and scalable method for measuring
the probability that a DNN classifier misclassifies inputs.
The method, which we term Robustness Measurement and

RoMA: a Method for Neural Network Robustness Measurement and Assessment

Assessment (RoMA), is inspired by modern certification
concepts, and operates under the assumption that a DNN’s
misclassification is due to some internal malfunction, caused
by random input perturbations (as opposed to misclassifi-
cations triggered by an external cause, such as a malicious
adversary). A random input perturbation can occur naturally
as part of the system’s operation, e.g., due to scratches on
a camera lens or communication disruptions. Under this
assumption, ROMA can be used to measure the model’s
robustness to randomly-produced adversarial inputs. The
proposed method has several applications, such as compar-
ing the robustness of multiple models and picking the best
one; checking the impact of various configurable parameters
(e.g., the number of training epochs, or the magnitude of the
input perturbation) on the model’s robustness; or as part of
a functional hazard analysis, as previously described.

RoMA is a method for estimating rare events in a large
population — in our case, adversarial inputs within a space
of inputs that are generally classified correctly. The method
relies on the properties of normal distributions. Intuitively,
if it is known that the rare events (adversarial inputs) are
distributed normally within the input space, it is usually
sufficient to: sample a few hundred random input points;
measure the “level of adversariality” of each such point; use
these measurements to draw a Gaussian curve; and then use
the normal distribution function to evaluate the probability
of encountering an adversarial input within the input space.
Unfortunately, adversarial inputs are often not distributed
normally. To overcome this difficulty, RoOMA first applies a
power transformation called Box-Cox (Box & Cox, 1982),
after which the distribution often becomes normal and can
be analyzed.

At a high level, ROMA consists of the following steps:

1. for an arbitrary input point from the test set zj, we
randomly sample n perturbations of xj (usually, a

few hundreds), and obtain a set of perturbed inputs
{Zt,..., 3"},

2. we evaluate the DNN on each 7, obtaining the corre-
sponding outputs {5, ..., 76" };

3. for each 7;’, we collect the maximal entry in 70! as-
signed to any label other than the correct label (that
is, other than to the original label assigned to x; by
the data set). These values, which we term the highest
incorrect confidence (hic) scores, represent how close

each x is to being an adversarial input;

4. if the hic score data does not distribute normally
(according to the Anderson-Darlin goodness-of-fit
test (Anderson, 2011)), we apply a power transforma-
tion called Box-Cox (Box & Cox, 1982) to normalize
its distribution; and

5. if the distribution is now normal, we use the properties
of the normal distribution function to calculate the
probability for an adversarial input around .

The Box-Cox statistical power transformation, which RoMA
uses for normalizing the distribution of confidence scores
assigned to incorrect labels, is a widespread method that
does not pose any restrictions on the DNN in question (e.g.,
Lipschitz continuity, certain kinds of activation functions,
or specific network topology). Further, the method does not
require access to the network’s design or weights, and is
thus applicable to large, black-box DNNss.

We implemented our method as a proof-of-concept tool, and
evaluated it on standard DNN architectures: VGG16 (Si-
monyan & Zisserman, 2015), Resnet (He et al., 2016), and
Densenet (Huang et al., 2017a), all trained on the CIFAR10
data set (Krizhevsky & Hinton, 2009). We used RoMA to
compare the robustness of these DNN models and found, as
expected, that a higher number of epochs (i.e., high level of
training) leads to a higher robustness score. Additionally,
we used ROMA to measure how the allowed magnitude of
perturbation affects the robustness of a DNN model. Finally,
using RoMA, we found that the categorial robustness score
of a DNN (i.e., the robustness score of inputs labeled as a
particular category) varies significantly among the different
categories. This finding could allow users and regulators to
specify different acceptable robustness thresholds for each
target category, instead of a single global threshold, which
may not fit the entire system. The concept of measuring
the robustness score per category is in line with aerospace
software certification guidelines (DO-178), where different
sub-systems often require different design assurance levels
(DALs) (Federal Aviation Administration, 1993).

To summarize, our main contributions are:

¢ Introducing RoMA: a new method for measuring the
robustness of a DNN model. The new method is scal-
able and can run on black-box DNNs.

* Comparing the robustness of multiple state-of-the-art
DNN models.

* Using RoMA to measure the effect of perturbation
level has on the robustness of the DNN model.

* Formally computing categorial robustness scores, and
demonstrating that they can differ significantly be-
tween labels.

Related work. The topic of evaluating a model’s adversar-
ial robustness has been studied extensively. Some notable
approaches include:

« Statistical approaches that evaluate the probability of
encountering an adversarial input in the population. In

RoMA: a Method for Neural Network Robustness Measurement and Assessment

recent papers (Huang et al., 2021; Cohen et al., 2019),
Huang et al. and Cohen et al. use random sampling,
which is similar in spirit to RoOMA, but which assumes
that the perturbed images’ scores are distributed nor-
mally — and as we later demonstrate, this assump-
tion often does not hold. In another paper, Webb et
al. (Webb et al., 2018) use a sampling method called
multi-level splitting, which provides no formal guaran-
tee of the DNN’s robustness. Mangal et al. (Mangal
et al., 2019) use importance sampling, which might be
biased due to lack of sampling in areas of the popu-
lation that are deemed unimportant. Moreover, Man-
gal’s approach assumes that the network’s output is
Lipschitz-continuous, which limits its applicability. In
contrast, ROMA requires no Lipschitz-continuity as-
sumptions, does not assume a-priori that the adversarial
inputs are distributed normally, and provides rigorous
robustness guarantees.

* Formal-verification based approaches (Katz et al.,
2017; Wang et al., 2018; Jacoby et al., 2020; Wu et al.,
2020; Amir et al., 2021; Katz et al., 2021), which allow
for computing a DNN’s exact adversarial robustness
score. These approaches typically convert the problem
into a constraint satisfiability problem, and then apply
search and deduction procedures to solve it efficiently.
However, verification-based approaches afford only
limited scalability, and operate strictly on white-box
DNN:s. In contrast, ROMA is a scalable technique, and
can operate on black-box DNNs.

* Approaches for computing an estimate bound on the
probability that a classifier’s margin function exceeds
a given value (Weng et al., 2019; Anderson & Sojoudi,
2020; Dvijotham et al., 2018). These analyses focus
on the worst-case behavior, thus producing bounds that
might be inadequate for regulatory certification. In
contrast, ROMA focuses on the average case, which is
more realistic in many application domains.

QOutline. We begin with some needed background on ad-
versarial robustness in Section 2. We then describe our
proposed method for measuring adversarial robustness in
Section 3, followed by a description of our evaluation setup
in Section 4. In Section 5 we summarize and discuss our
results.

2. Background

Neural Network. A neural network N is a function
N : R" — R™, which maps a real-valued input vector
Z € R™ to a real-value output vector i € R™. For classifi-
cation networks, which is our subject matter, 7 is classified
as label [if y’s I’th entry has the highest score; i.e., if
argmax(N (%)) = 1.

Local Adversarial Robustness. The local adversarial ro-
bustness of a DNN is a measure of how resilient that network
is against adversarial perturbations to specific inputs. Intu-
itively, a network with high robustness behaves “smoothly”,
i.e., small perturbations to its input do not cause significant
spikes in its output. More formally (Bastani et al., 2016;
Huang et al., 2017b):

Definition 2.1. A DNN N is e-locally-robust at input point
Zp iff

V.|| Z—20| |0 < € = argmax(N(Z)) = arg max (N (£))

Intuitively, Definition 2.1 states that for input vector &,
which is at a distance at most ¢ from a fixed input g, the
network function assigns to & the same label that it assigns
to g (for simplicity, we use here the L, norm, but other
metrics could also be used). When a network is not e-local-
robust at point xg, there exists a point that is at a distance
of at most € from 2, which is misclassified; this Z is called
an adversarial input. In this context, local refers to the fact
that xg is fixed. Larger values of € imply a larger distance
from z, and hence a stronger robustness guarantee if the
property holds. Intuitively, in a DNN for image classifica-
tion that is e-local-robust, small perturbations to zg, (i.e.,
tiny perturbations that a human would fail to detect), should
not result in a change of predicted class.

Distinct Adversarial Robustness. Recall that the label as-
signed by a classification network is selected according to
its greatest output value. The final layer in such networks is
often a softmax layer, and its outputs are commonly inter-
preted as confidence scores assigned to each of the possible
labels.! We use ¢(Z) to denote the highest confidence score,
ie. ¢(Z) = max(N(Z)).

We are interested in an adversarial input & only if it is dis-
tinctly misclassified, i.e., if 2’s assigned label receives a
significantly higher confidence score than that of the la-
bel assigned to #y. For example, if arg max(N(2p)) #
arg max (N (%)), but the corresponding confidence score is
¢(Z) = 0.4, then Z is not distinctly an adversarial input: it
1s misclassified, but the network is not confident about this
misclassification. In contrast, a case where ¢(Z) = 0.8 is
clearly much more relevant. We refer to adversarial inputs
which are misclassified with high confidence (greater than
some threshold) as distinctly adversarial inputs, and refine
Definition 2.1 to only consider them, as follows:

Definition 2.2. A DNN N is (¢, d)-distinctly-locally-robust
at input point g, iff

VZ || — @0]|oo < € =

(arg max(N (&) = argmax (N (29))) V (¢(Z) < 0)

IThe term confidence is sometimes used to represent the relia-
bility of the DNN as a whole; this is not our intention here.

RoMA: a Method for Neural Network Robustness Measurement and Assessment

Intuitively, if the definition does not hold then there exists a
(distinctly) adversarial input Z that is at most € away from
2y, and which is assigned a label different than that of z
with a confidence score that is at least d.

3. The Proposed Method
3.1. Probabilistic Robustness

Definitions 2.1 and 2.2 are geared for an external, mali-
cious adversary: they are concerned with the existence of
an adversarial input, implicitly assuming the adversary will
be successful in finding it if such an input exists. Here,
we follow common certification methodologies that deal
with internal malfunctions of the system (Federal Aviation
Administration, 1993), and focus on non-malicious adver-
saries. Differently put, we assume that perturbations occur
naturally, and are not necessarily malicious — and this is
represented by assuming that perturbations are generated
randomly. We argue that the non-malicious adversary set-
ting is more realistic for widely-deployed systems, such as
medical devices, aerospace, and trains, which are expected
to operate at a large scale for a prolonged period, and are
more likely to randomly encounter adversarial inputs than
those crafted by a malicious adversary.

Targeting randomly generated adversarial inputs requires
extending Definitions 2.1 and 2.2 into a probabilistic defini-
tion, as follows:

Definition 3.1. The (0, €)-probabilistic-local-robustness
score of a DNN N at input point z;, abbreviated
plrs. (N, %5), is defined as:

plrs. (N, 20) £
Py||7 -3 <e[(arg max(N (Z)) = arg max(N (2p))
Ve(Z) < 8)]

Intuitively, the definition measures the probability that an
input Z, drawn at random from the e-ball around zg, will
either have the same label as g or, if it does not, will receive
a confidence score lower than ¢ for its (incorrect) label.

A key point is that probabilistic robustness, as defined in
Definition 3.1 is a scalar value: the closer this value is to
1, the less likely it is a random perturbation to zy would
produce a distinctly adversarial input. This is in contrast to
Definitions 2.1 and 2.2, which are Boolean in nature. We
also note that the probability value in Definition 3.1 can
be computed with respect to values of & drawn according
to any input distribution of interest. For simplicity, unless
otherwise stated, we assume that Z is drawn uniformly at
random.

In practice, we propose to compute plrs (N, Z) by first
computing the probability that a randomly drawn Z is an

adversarial input, and then taking that probability’s comple-
ment. Unfortunately, directly bounding the probability of
randomly encountering an adversarial input, e.g., with the
Monte Carlo or Bernoulli methods (Hammersley, 2013), is
not feasible due to the typical extreme sparsity of adversarial
inputs, and the large number of samples required to achieve
reasonable accuracy (Webb et al., 2018). Thus, we require a
different statistical approach to obtain this measure, using
only a small number of samples. We next propose such an
approach.

3.2. Sampling Method and the Normal Distribution

Our approach is to measure the probability of randomly en-
countering an adversarial input, by examining a finite set of
perturbed samples around xy. Each perturbation is selected
through simple random sampling (Taherdoost, 2016), so
that the overall perturbation size to the input features of g
does not exceed the given e. Next, each perturbed input &
is passed through the DNN to obtain a vector of confidence
scores for the possible output labels. From this vector, we
extract the highest incorrect confidence (hic) score

{N (@[]}

hic(¥) = max
i#arg max (N (20))
which is the highest confidence score assigned to an incor-
rect label, i.e., a label different from the one assigned to zp.
Observe that input Z is distinctly adversarial if and only if
its hic score exceeds the § distinctness threshold (assuming
0 > 0.5), and so hic values can serve as a proxy for deciding
the “adversarially” of 2.

The main remaining question is how to extrapolate from the
collected hic values a conclusion regarding the hic values
in the general population. The normal distribution is a use-
ful notion in this context: if the hic values are distributed
normally (as determined by a statistical test), it is straightfor-
ward to obtain such a conclusion, even if adversarial inputs
are scarce.

To illustrate this process, we trained a VGG16-10 DNN
model (information about the trained model and the dataset
appears in Section 4), and examined an arbitrary point z,
classified as some label [y, from its training set. We ran-
domly generated 10,000 perturbed images from xj with
€ = 0.04, and ran them through the DNN. For each output
vector obtained this way we collected the hic value, and
then plotted these values as the blue histogram in Figure 1.
The green curve represents the normal distribution using
the average and standard deviation of the raw data. As the
figure shows, the data is normally distributed; this claim
is supported by running a “goodness-of-fit” test (explained
later).

Our goal is to compute the probability of a fresh, randomly-
perturbed input to be misclassified, i.e. to be assigned a

RoMA: a Method for Neural Network Robustness Measurement and Assessment

600

400

Count

200

0.3 04 0.5 0.6 0.7

Figure 1. A histogram depicting the highest incorrect confidence
(hic) scores assigned to each of 10,000 perturbed inputs. These
scores are normally distributed.

hic score that exceeds a given §, say 0.6. For data dis-
tributed normally, as in this case, we begin by calculating
the statistical standard score (Z-Score), which is the num-
ber of standard deviations by which the value of a raw
score (in our case,) exceeds the mean value. Once the
Z-score is obtained, we can use the normal distribution
function, which computes the correct probability of the
event using the Gaussian function. In our case, we get
hic(Z) ~ N(u = 0.499,% = 0.059%), where y is the av-
erage score and X is the variance. The resulting Z-score is
‘STT" = 0:6-0-299 — 1.741, where o is the standard devia-
tion. Recall that our goal is to compute the plr score, which
is the probability of the hic value not exceeding d; and so
we obtain that:

plro.6,0.04(V, o) = NormalDistribution(Z-score)
= NormalDistribution(1.741)

+2

1 t=1.741
= — ez dt
\Y 2T /;oo
= 0.9591

We thus arrive at a probabilistic local robustness score of
95.91%. Consequently, a perturbed image drawn uniformly
at random has a chance of (1 — 0.9591) = 4.08% of consti-
tuting an adversarial input.

Of course, given data obtained empirically, as in our case,
we need a reliable way to determine whether the data is
distributed normally before applying the aforementioned
approach. A goodness-of-fit test is a procedure for deter-
mining whether a set of n samples can be considered as
drawn from a specified distribution. A common goodness-
of-fit test for the normal distribution is the Anderson-Darlin
test (Anderson, 2011), which is used by widespread statis-
tical, commercial applications such as SPSS (IBM, 2001)
and JMP (SAS, 2001). Usually, a few hundred samples are
more than enough to determine that a distribution is normal
via the Anderson-Darlin test.

3.3. The Box-Cox Transformation

Unfortunately, most often the hic values of the perturbed
inputs around () are not normally distributed, and so the
aforementioned approach does not immediately apply. For
example, in our VGG16-10 model, out of the 10,000 points
(images) in the CIFAR10’s test set, only 1282 (less than
13%) points demonstrated normally-distributed hic values
for the perturbed inputs around them (as determined by the
Anderson-Darlin test). Figure 2 illustrates the abnormal
distribution of hic values of perturbed input around one of
the other input points, where we consequently cannot use
the normal distribution function to estimate the probability
of adversarial inputs in the population.

600

400

Count

200

0.2 0.3 0.4 0.5 0.6

Figure 2. A histogram depicting the highest incorrect confidence
(hic) scores of each of 10,000 perturbed inputs around one of the
test points. This time, these scores are not normally distributed.

The strategy that we propose for handling abnormal dis-
tributions of data like the one depicted in Figure 2 is to
apply statistical transformations. Such transformations pre-
serve key properties of the data, while producing a normally
distributed measurement scale (Griffith et al., 2013) — ef-
fectively converting the given distribution into a normal
one. Power transformations are widely used by statisticians,
and supported by standard statistical applications such as
SPSS and JMP. There are two main transformations used to
normalize probability distributions: Box-Cox (Box & Cox,
1982) and Yeo-Johnson (Yeo & Johnson, 2000). Here, we
focus on the Box-Cox power transformation, which is pre-
ferred for distributions of positive hic values (as in our case).
Box-Cox is a continuous, piecewise-linear power transform
function, parameterized by a real-valued A, defined as fol-
lows:

Definition 3.2. The Box-Cox, power transformation of

input x is:
zr—1
by — A
(@) {m@)

The selection of the A value is crucial for the successful nor-
malization of the data. There are multiple automated meth-
ods for A selection, which go beyond our scope here (Rossi,
2018; Asar et al., 2017). For our implementation of the tech-
nique, we used the common SciPy Python package (Scipy,
2021), which implements one of these automated methods.

ifA#£0
ifA=0

RoMA: a Method for Neural Network Robustness Measurement and Assessment

Figure 3 depicts the distribution of the data from Figure 2,
after applying the Box-Cox transformation, with an auto-
matically calculated A = 0.534 value. As the figure shows,
the data is now normally distributed: hic(Z) ~ N (p =
—0.79,% = 0.092%). The normal distribution was con-
firmed with the Anderson-Darlin test, with a confidence
score of over 99%. Following the Box-Cox transformation,
we can now calculate the Z-Score, which gives 3.71, and
the corresponding plr score, which turns out to be 99.98%—
a high score of robustness for this image from the test set.

800
600

Count

400
200
0

-1.1 -1 -09 -08 -07 -06 -05

Figure 3. A histogram depicting the highest incorrect confidence
(hic) scores of each of the 10,000 perturbed images from Figure 2,
after applying the Box-Cox transformation.

3.4. The RoMA Certification Algorithm

Based on the previous sections, our algorithm for computing
plr scores is given as Algorithm 1.

Algorithm 1 Compute Probabilistic Local
Robustness(d, €, £y, n, N, D)
: fori:=1tondo
z* = CreatePerturbedPoint(zy, €, D)
hic[i] < Predict(N, z°)
end for
if Anderson-Darlin(hic # NORMAL) then
hic <— Box-Cox(hic)
if Anderson-Darlin(hic # NORMAL) then
Return “Fail”
end if
end if
avg < Average(hic)
: std < StdDev(hic)
: z-score < Z-Score(avg,std,d)
: Return NormalDistribution(z-score)

_—
TV RN R

—_ =
R YN]

The inputs to the algorithm are: (i) J, the confidence thresh-
old for a distinctly adversarial input; (ii) €, the maximum
amplitude of perturbation that can be added to zp; (iii) 2o,
the input point whose plr score is being computed; (iv) n,
the number of perturbed samples to generate around z;
(v) N, the neural network; and (vi) D, the distribution from
which adversarial inputs are drawn.

The algorithm starts by generating n perturbed inputs around

the provided xj, each drawn according to the provided dis-
tribution D and with a perturbation that does not exceed
€ (lines 1-2). Line 3 then stores the hic score of each per-
turbed input in the hic array. Next, lines 5-10 confirm that
the samples’ hic values distribute normally, optionally ap-
plying the Box-Cox transformation if needed. Finally, on
lines 11-13, the algorithm calculates the probability of ran-
domly perturbing the input into a distinctly adversarial input
using the properties of the normal distribution, and returns
the computed plr; (N, ©4) score on line 14.

Soundness and Completeness. Algorithm 1 depends on
the distribution of hic(Z) being normal. If the distribution
is initially not normal, the algorithm attempts to normalize
it using the Box-Cox transformation. The Anderson-Darlin
goodness-of-fit tests ensure that the algorithm will not treat
an abnormal distribution as a normal one, and thus guarantee
the soundness of the computed plr scores.

The algorithm’s completeness depends on its ability to al-
ways obtain a normal distribution. As our evaluation demon-
strates, the Box-Cox transformation can indeed lead to a
normal distribution very often. However, the transformation
might fail in producing a normal distribution; this failure
will be identified by the Anderson-Darlin test, and our algo-
rithm will stop with a failure notice in such cases. In that
sense, Algorithm 1 is incomplete. In practice, failure no-
tices by the algorithm can sometimes be circumvented — by
increasing the sample size, or by evaluating the robustness
of other input points.

In our evaluation, we observed that the success of Box-
Cox often depends on the value of €. An analysis of the
results indicated that small or large € values more often
led to failures, whereas mid-range values more often led
to success. We speculate that small values of €, which
allow only tiny perturbation to the input, cause the model to
assign similar hic values to all points in the e-ball, resulting
in a small variety of hic values for all sampled points; and
consequently, the distribution of hic values is nearly uniform,
and is impossible to normalize. We further speculate for
large values of €, where the corresponding e-ball contains a
significant chunk of the input space, the sampling produces
a close-to-uniform distribution of all possible labels, and
consequently a close-to-uniform distribution of hic values,
which is impossible to normalize. We thus argue that the
mid-range values of € are the more relevant ones. Adding
better support for cases where Box-Cox fails, for example
by using additional statistical transformations and providing
informative output to the user, remains a work in progress.

4. Evaluation

For evaluation purposes, we implemented Algorithm 1 as a
proof-of-concept tool. The tool is written in Python 3.7.10,

RoMA: a Method for Neural Network Robustness Measurement and Assessment

uses the TensorFlow 2.5 and Keras 2.4 frameworks. For
our models, we used Resnet-10, Resnet-100, VGG16-10,
VGG16-200, and Densenet, as described in Table 1, all
trained using the CIFAR10 data set. All experiments men-
tioned in the following section were run using the Google
Colab Pro environment, with an NVIDIA-SMI 470.74 GPU
and a single-core Intel(R) Xeon(R) CPU @ 2.20GHz. The
code for the tool, the experiments, and the model’s training
is (anonymously) available online (Annonymized, 2021),
and will be publicly released with the final version of this

paper.

Table 1. Neural network models’ properties.

Name Base Model #Epochs Accuracy Loss
Resnet-10 Resnet 10 0.72 1.07
Resenet-100 Resnet 100 0.91 0.4456
VGG16-10 VGGI6 10 0.73 0.8329
VGG16-200 VGGl16 200 0.76 2.7082
Densenet Densenet 200 0.93 0.5335

4.1. Experiment 1: Measuring the sensitivity of
robustness to perturbation size

By our notion of robustness given in Definition 3.1, it is
likely that the plrs (N, 20) score decreases as € increases.
For our first experiment, we set out to measure the rate
of robustness decrease. Using our Densenet model, we
repeatedly invoked Algorithm 1 to compute plr scores for
increasing values of €. For our 2(, we arbitrarily selected the
first 200 images from the CIFAR10 test set, and measured
the average robustness of the images for each e. The aver-
aged results (depicted in Figure 4) indicates a correlation
between e and the robustness score. This result is supported
by earlier findings (Webb et al., 2018).

100.0000%

99.9760%
99.9800%

99.9615%

w.gzn%
\Q0.8856% 99.8845%

99.9600%

99.9400%

99.9200%

plr

99.9000%

99.8800%

99.8600%

99.8400%

99.8200%
0.04 0.05 0.06 0.07 0.08

Value of €

Figure 4. Average plr score of the first 200 images from CIFAR10
dataset, computed on our VGG16-10 model as a function of e.

The experiment was conducted by running Algorithm 1 with
6 = 0.6, n = 1,000, N = Densenet on each of the first
200 input images from the CIFAR1O0 test set. Running the

algorithm took less than 20 minutes for the entire experi-
ment. We note here that Algorithm 1 naturally lends itself
to parallelization, as each perturbed input can be evaluated
independently of the others; we leave adding these capa-
bilities to our proof-of-concept implementation for future
work.

4.2. Experiment 2: Comparing robustness across
models

The ability to efficiently compute plr scores allows us to
compare multiple models based on their robustness. Using
Algorithm 1, we computed the plr scores for each of our
five models from table 1, averaged over the first 200 images
from the CIFARI1O0 test set. We arbitrarily set e = 0.04,
n = 1,000 and § = 0.6. The average plr scores appear in
Figure 5, and indicate that, per base model, a higher number
of epochs leads to a higher robustness score.

100.500%

99.991% 99.998%

100.000%

99.562%

99.500%

99.000%
98.576%

98.500% —4

PLR

98.117%
98.000%

97.500%

97.000%

Resnet-10

VGG16-10 Densenet VGG16-200 Resenet-100

Model Selected

Figure 5. A comparison of average plr scores, computed over the
first 200 CIFAR10 images, among the models appearing in Table 1.

Running Algorithm 1 as part of the described experiment
with 1,000 perturbation samples for each image required
less than seven minutes for the entire experiment.

Completeness Rates. We observed that the completeness
rate (the number of samples for which Algorithm 1 was
successful, divided by the total number of samples) varies
between the models: in VGG16-10 and VGG-200, the com-
pleteness rates were 88% and 75.5% respectively; in Resnet-
10 and Resnet-100 the rates were 82.5% and 86.5% respec-
tively; and in Densenet, the rate was 78%. To improve these
rates, the steps described in Section 3.4 can be applied.

4.3. Experiment 3: Categorial robustness

For our final experiment, we focused on categorial robust-
ness, where we first measure the robustness of inputs labeled
as a specific category, and then compare the robustness
scores across categories.

We ran Algorithm 1 on our N = VGG16-10 model, with § =

RoMA: a Method for Neural Network Robustness Measurement and Assessment

0.6, € = 0.04, and n = 1, 000 for all 10,000 CIFAR10 test
set images. The results, separated by category, appear in
Table 2. For each category we list the average plr score, the
standard deviation of the data which indicates the scattering
for each category, and the probability of randomly generat-
ing an adversarial input (the “Adv” column, calculated as
1 —plr).

Table 2. An analysis of average, per-category robustness, com-
puted over all 10,000 images from the CIFAR10 dataset.

Category plr Std-Dev. Adv
Airplane 99.143% 5.18% 0.857%
Automotive 99.372% 3.86% 0.628%
Bird 97.226% 8.8T% 2.774%
Cat 97.112% 8.77% 2.888%
Deer 98.586% 6.25% 1.414%
Dog 97.233% 8.58% 2.767%
Frog 98.524% 6.39% 1.476%
Horse 98.606% 6.09% 1.394%
Ship 98.389% 6.63% 1.611%
Truck 99.390% 4.26% 06.10%

The results expose an interesting insight, namely the high
variability in robustness between the different categories.
For example, the probability of encountering an adversar-
ial input for inputs classified as Cats is four times greater
than the probability of encountering an adversarial input for
inputs classified as Trucks. We observe that the standard
deviation for these two categories is very small, which in-
dicates that they are “far apart” — the difference between
Cats and Trucks, as determined by the network, is generally
greater than the difference between two Cats or between
two Trucks. We applied a T-test and a binomial test, which
are well-established statistical tools for measuring the dif-
ference between two sets of values, to the Cat and Truck
categories. The tests produced a similarity score of less than
0.1%, indicating that the two categories are indeed distinctly
different. The important conclusion that we can draw is
that the per-category robustness of models can be far from
uniform.

It is common in certification methodology to assign each
sub-system a different robustness objective score depending
on the sub-system’s criticality (Federal Aviation Adminis-
tration, 1993). Yet, to the best of our knowledge, this is the
first time such differences in neural networks’ categorial
robustness have been measured and reported. We believe
categorial robustness could affect DNN certification efforts,
by allowing engineers to require separate robustness thresh-
olds for different categories. For example, for a traffic sign
recognition DNN, a user might require a high robustness
score for the “stop sign” category, and be willing to settle

for a lower robustness score for the “parking sign” category.

Running Algorithm 1 on the entire CIFAR10 test set (10,000
samples) took 37 minutes. The completeness rate for the
experiment was 90.48%.

5. Summary and Discussion
5.1. Summary

In this paper, we introduced RoOMA — a novel statistical
and scalable method for measuring the probabilistic local
robustness of a black-box, high-scale DNN model. We
demonstrated RoMA’s applicability in several aspects and
on multiple common DNN models. The key advantages of
RoMA over existing methods are: (i) it uses straightforward
and intuitive statistical method for measuring DNN robust-
ness; (ii) it is scalable; (iii) it works on black-box DNN
models and makes no assumptions such as Lipschitz conti-
nuity or piecewise-linear constraints; and (iv) the method
is quick in comparison to formal verification methods and
other methods that require hours or more for analyzing local
robustness (Wang et al., 2018). Our approach’s limitation
stems from the dependence on the normal distribution of
the perturbed inputs, and will fail whenever the Box-Cox
transformation does not normalize the perturbed input dis-
tribution.

The plr scores computed by RoMA indicate the risk of
using a DNN model, and can allow regulatory agencies to
conduct risk mitigation procedures: a common practice for
integrating sub-systems with a known MTBF into safety-
critical systems. The ability to perform risk and robustness
assessment is an important step towards using DNN models
in the world of safety-critical applications, such as medical
devices, UAVs, automotive, and others. We believe that our
work also showcases the potential key role of categorial
robustness in this endeavor.

Moving forward, we intend to: (i) evaluate our tool on ad-
ditional norms, beyond L.; and (ii) better characterize the
cases where the Box-Cox transformation fails, and search
for other statistical tools can succeed in those cases; and
(iii) improves the scalability of our tool by adding paral-
lelization capabilities.

References

Amir, G., Wu, H., Barrett, C., and Katz, G. An SMT-Based
Approach for Verifying Binarized Neural Networks. In
Proc. 27th Int. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), pp. 203—
222, 2021.

Anderson, B. and Sojoudi, S. Data-Driven Assessment of
Deep Neural Networks with Random Input Uncertainty,

RoMA: a Method for Neural Network Robustness Measurement and Assessment

2020. Technical Report. http://arxiv.org/abs/
2010.01171.

Anderson, T. Anderson-Darling Tests of Goodness-of-Fit.
Int. Encyclopedia of Statistical Science, 1:52-54, 2011.

RoMA: Code and

https://

Annonymized.
Experiments, 2021.
drive.google.com/drive/folders/
lrIrLIwiwDCsueJUMGMzcQfxgqWwP7gl8y?usp=
sharing.

Asar, O., Ilk, O., and Dag, O. Estimating Box-Cox Power
Transformation Parameter Via Goodness-of-Fit Tests.

Communications in Statistics-Simulation and Computa-
tion, 46(1):91-105, 2017.

Author, N. N. Suppressed for anonymity, 2021.

Bastani, O., [oannou, Y., Lampropoulos, L., Vytiniotis, D.,
Nori, A., and Criminisi, A. Measuring Neural Net Ro-
bustness with Constraints. In Proc. 30th Conf. on Neural
Information Processing Systems (NIPS), 2016.

Box, G. and Cox, D. An Analysis of Transformations Re-
visited, Rebutted. Journal of the American Statistical
Association, 77(377):209-210, 1982.

Carlini, N. and Wagner, D. Towards Evaluating the Robust-
ness of Neural Networks. In Proc. 2017 IEEE Symposium
on Security and Privacy (S&P), pp. 39-57, 2017.

Cohen, J., Rosenfeld, E., and Kolter, Z. Certified adver-
sarial robustness via randomized smoothing. In Interna-
tional Conference on Machine Learning, pp. 1310-1320.
PMLR, 2019.

Dmitriev, K., Schumann, J., and Holzapfel, F. Toward certi-
fication of machine-learning systems for low criticality
airborne applications. In 2021 IEEE/AIAA 40th Digi-
tal Avionics Systems Conference (DASC), pp. 1-7. IEEE,
2021.

Duda, R. O., Hart, P. E., and Stork, D. G. Pattern Classifi-
cation. John Wiley and Sons, 2nd edition, 2000.

Dvijotham, K., Garnelo, M., Fawzi, A., and Kohli, P. Veri-
fication of Deep Probabilistic Models, 2018. Technical
Report. http://arxiv.org/abs/1812.02795.

European Union Aviation Safety Agency. Ar-
tificial Intelligence = Roadmap: A Human-
Centric Approach To AI In Aviation, 2020.

https://www.easa.europa.eu/newsroom-
and-events/news/easa—-artificial-
intelligence-roadmap-10-published.

FAA. System Safety Handbook, 2021a. https:
//www.faa.gov/regulations_policies/
handbooks.manuals/aviation/
risk_management/ss_handbook/.

FAA. System Safety Handbook, 2021b. https:
//www.faa.gov/documentLibrary/media/
Advisory Circular/AC_23_1309-1E.pdf.

Federal Aviation Administration. RTCA, Inc., Document
RTCA/DO-178B , 1993. https://nla.gov.au/
nla.cat-vn4510326.

Goodfellow, L., Shlens, J., and Szegedy, C. Explaining
and Harnessing Adversarial Examples, 2014. Technical
Report. http://arxiv.org/abs/1412.6572.

Griffith, D. A., Amrhein, C., and Huriot, J.-M. Econometric
advances in spatial modelling and methodology: essays

in honour of Jean Paelinck, volume 35. Springer Science
& Business Media, 2013.

Hammersley, J. Monte Carlo Methods. Springer Science &
Business Media, 2013.

He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual Learn-
ing for limage Recognition. In Proc. 29th IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), pp.
770-778, 2016.

Huang, C., Hu, Z., Huang, X., and Pei, K. Statistical Certifi-
cation of Acceptable Robustness for Neural Networks. In
Proc. Int. Conf. on Artificial Neural Networks (ICANN),
pp- 79-90, 2021.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Densely Connected Convolutional Networks. In Proc.
30th IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR), pp. 2261-2269, 2017a.

Huang, X., Kwiatkowska, M., Wang, S., and Wu, M. Safety
Verification of Deep Neural Networks. In Proc. 29th Int.
Conf. on Computer Aided Verification (CAV), pp. 3-29,
2017b.

IBM. IBM SPSS Website, 2001. https://
www.ibm.com/products/spss—statistics.

Ilyas, A., Santurkar, S., Tsipras, D., Engstrom, L., Tran,
B., and Madry, A. Adversarial Examples are not Bugs,
they are Features, 2019. Technical Report. http://
arxiv.org/abs/1905.02175.

Jacoby, Y., Barrett, C., and Katz, G. Verifying Recurrent
Neural Networks using Invariant Inference. In Proc. 18th
Int. Symposium on Automated Technology for Verification
and Analysis (ATVA), pp. 57-74, 2020.

http://arxiv.org/abs/2010.01171
http://arxiv.org/abs/2010.01171
https://drive.google.com/drive/folders/1rIrLIwiwDCsueJUMGMzcQfxqWwP7g18y?usp=sharing
https://drive.google.com/drive/folders/1rIrLIwiwDCsueJUMGMzcQfxqWwP7g18y?usp=sharing
https://drive.google.com/drive/folders/1rIrLIwiwDCsueJUMGMzcQfxqWwP7g18y?usp=sharing
https://drive.google.com/drive/folders/1rIrLIwiwDCsueJUMGMzcQfxqWwP7g18y?usp=sharing
http://arxiv.org/abs/1812.02795
https://www.easa.europa.eu/newsroom-and-events/news/easa-artificial-intelligence-roadmap-10-published
https://www.easa.europa.eu/newsroom-and-events/news/easa-artificial-intelligence-roadmap-10-published
https://www.easa.europa.eu/newsroom-and-events/news/easa-artificial-intelligence-roadmap-10-published
https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/risk_management/ss_handbook/
https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/risk_management/ss_handbook/
https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/risk_management/ss_handbook/
https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/risk_management/ss_handbook/
https://www.faa.gov/documentLibrary/media/Advisory_Circular/AC_23_1309-1E.pdf
https://www.faa.gov/documentLibrary/media/Advisory_Circular/AC_23_1309-1E.pdf
https://www.faa.gov/documentLibrary/media/Advisory_Circular/AC_23_1309-1E.pdf
https://nla.gov.au/nla.cat-vn4510326
https://nla.gov.au/nla.cat-vn4510326
http://arxiv.org/abs/1412.6572
https://www.ibm.com/products/spss-statistics
https://www.ibm.com/products/spss-statistics
http://arxiv.org/abs/1905.02175
http://arxiv.org/abs/1905.02175

RoMA: a Method for Neural Network Robustness Measurement and Assessment

Katz, G., Barrett, C., Dill, D., Julian, K., and Kochenderfer,
M. Reluplex: An Efficient SMT Solver for Verifying
Deep Neural Networks. In Proc. 29th Int. Conf. on Com-
puter Aided Verification (CAV), pp. 97-117, 2017.

Katz, G., Barrett, C., Dill, D., Julian, K., and Kochenderfer,
M. Reluplex: a Calculus for Reasoning about Deep
Neural Networks. Formal Methods in System Design
(FMSD), 2021.

Kearns, M. J. Computational Complexity of Machine Learn-
ing. PhD thesis, Department of Computer Science, Har-
vard University, 1989.

Krizhevsky, A. and Hinton, G. Learning Multiple Layers of
Features from Tiny Images, 2009. Techinical Report.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207-1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Mangal, R., Nori, A., and Orso, A. Robustness of Neural
Networks: A Probabilistic and Practical Approach. In
Proc. 415t IEEE/ACM Int. Conf. on Software Engineering:
New Ideas and Emerging Results (ICSE-NIER), pp. 93—
96, 2019.

Michalski, R. S., Carbonell, J. G., and Mitchell, T. M. (eds.).
Machine Learning: An Artificial Intelligence Approach,
Vol. 1. Tioga, Palo Alto, CA, 1983.

Mitchell, T. M. The need for biases in learning generaliza-
tions. Technical report, Computer Science Department,
Rutgers University, New Brunswick, MA, 1980.

Newell, A. and Rosenbloom, P. S. Mechanisms of skill
acquisition and the law of practice. In Anderson, J. R.
(ed.), Cognitive Skills and Their Acquisition, chapter 1,
pp- 1-51. Lawrence Erlbaum Associates, Inc., Hillsdale,
NJ, 1981.

Pereira, A. and Thomas, C. Challenges of Machine Learning
Applied to Safety-Critical Cyber-Physical Systems. Ma-
chine Learning and Knowledge Extraction, 2(4):579-602,
2020.

Rossi, R. Mathematical Statistics: an Introduction to Likeli-
hood Based Inference. John Wiley & Sons, 2018.

Samuel, A. L. Some studies in machine learning using
the game of checkers. IBM Journal of Research and
Development, 3(3):211-229, 1959.

SAS. Sas jmp website, 2001.
urlhttps://www.ibm.com/products/spss-statistics.
Scipy. Scipy Python package, 2021. https://

scipy.org/.

Simonyan, K. and Zisserman, A. Very Deep Convolutional
Networks for Large-Scale Image Recognition. In Proc.
3rd Int. Conf. on Learning Representations (ICLR), pp.
1-14, 2015.

Taherdoost, H. Sampling methods in research methodology;
how to choose a sampling technique for research. How
to Choose a Sampling Technique for Research (April 10,
2016), 2016.

Vidot, G., Gabreau, C., Ober, I., and Ober, 1. Certification
of Embedded Systems Based on Machine Learning: A
Survey, 2021. Technical Report. http://arxiv.org/
abs/2106.07221.

Wang, S., Pei, K., Whitehouse, J., Yang, J., and Jana, S.
Formal Security Analysis of Neural Networks using Sym-
bolic Intervals. In Proc. 27th USENIX Security Sympo-
sium, pp. 1599-1614, 2018.

Webb, S., Rainforth, T., Teh, Y., and Pawan Kumar,
M. A Statistical Approach to Assessing Neural Net-
work Robustness, 2018. Technical Report. http://
arxiv.org/abs/1811.072009.

Weng, L., Chen, P.-Y., Nguyen, L., Squillante, M., Boopa-
thy, A., Oseledets, 1., and Daniel, L. PROVEN: Verifying
Robustness of Neural Networks with a Probabilistic Ap-
proach. In Proc. 36th Int. Conf. on Machine Learning
(ICML), pp. 6727-6736, 2019.

Wu, H., Ozdemir, A., Zelji¢, A., Irfan, A., Julian, K.,
Gopinath, D., Fouladi, S., Katz, G., Pasdreanu, C., and
Barrett, C. Parallelization Techniques for Verifying Neu-
ral Networks. In Proc. 20th Int. Conf. on Formal Meth-
ods in Computer-Aided Design (FMCAD), pp. 128—-137,
2020.

Yeo, I.-K. and Johnson, R. A New Family of Power Transfor-
mations to Improve Normality or Symmetry. Biometrika,
87(4):954-959, 2000.

https://scipy.org/
https://scipy.org/
http://arxiv.org/abs/2106.07221
http://arxiv.org/abs/2106.07221
http://arxiv.org/abs/1811.07209
http://arxiv.org/abs/1811.07209

